iFVTX Update

Patrick L. McGaughey

Goal: Detect heavy quark decays at forward rapidities

Supported by LANL LDRD Grant, ~1.25 M\$ / yr for 3 years

PHENIX DC Meeting 1/10/07

Pixel-based iFVTX

- LANL/FNAL/Columbia / UNM/ NMSU / ISU collaboration
- Designed to measure distance of closest approach of tracks to the primary vertex
- 4 planes of pixel tiles with FPIX chip (BTeV) bump bonded to a Silicon sensor
- Provides a DCA resolution of $\sigma_{DCA} \sim 100-200 \text{ microns}$
- Can send data to prototype Lvl-1 trigger boards

Measures:

D (charm) $\rightarrow \mu + X$

B (beauty) $\rightarrow \mu + X$

Distance of Closest Approach

iFVTX Detector Planes

- 4 Tracking stations composed of Si pixels, 50 by 400 um
- Cover ~ 1/8 of one muon arm (one octant) with ~100 detector modules
- Electronics recently developed by FNAL for BTeV, ~2M pixels. Low power, high speed and high resolution pixel detector.
- Can detect large numbers of D and some B decays per year at RHIC.

Dramatic Signal / Background Improvement for Heavy Quarks

Before vertex cuts Muon Events

After vertex cuts

Heavy Quark Yields*, for 1/8 of a Muon Arm

Run	Ions	Luminos.	$D \rightarrow \mu$	$B \rightarrow \mu$	$B \rightarrow J/\psi \rightarrow \mu$
		on tape	triggered	triggered	with 1 μ in
			counts	counts	SiVTX
2007	p+p	67 pb ⁻¹	28*106	24*103	240
2008	Au+Au	760 ub ⁻¹	8*106	6*103	160

• Rates before application of a vertex cut.

Z-Vertex Resolution,μm

Muon Momentum, GeV

iFVTX Status - Detector Elements

- Silicon Pixel Detectors
 - Total 28 wafers (6 detectors per wafer) fabricated by CIS,
 tested at CIS and UNM. More than enough for iFTX + spares
 - Excellent yields (~93%), only 1 bad wafer from 1st 20.
- Front End Chip (FPIX2)
 - Total 11 wafers produced by MOSIS / TSMC.
 - 1 wafer tested, good yield (~77%). Should have plenty of good die. Testing underway.
- Flip Chip Assembly of Detector Modules (Bump Bonding)
 - ~30 prototype multi-chip modules delivered from VTT.
 - Testing underway, yield low due to use of untested FPIX chips.
 - Will submit pre-production parts to VTT soon.
- High Density Interconnect (Kapton bus)
 - Prototypes delivered from CERN are OK, but yield was poor.
 - Have re-designed a simpler HDI, first deliveries mid Jan.

iFVTX Status - Mechanical

- Picture Frame (Detector Plane PC Board)
 - Prototype being designed at FNAL, uses TPG to transfer heat to liquid cooling.
 - Thermal issues have been studied, appropriate glues selected
- Mechanical Support Structure
 - Design underway at HYTEC.
 - Will fit into same cage design as FVTX and not interfere with VTX.
- Cooling System
 - Haven't chosen coolant temperature yet, may want detector to operate at room temperature.
 - Heat load should not be a problem (FPIX < 200 W).
- FPIX / Sensor Modules
 - Plan to assemble and test at FNAL.

iFVTX Status - DAQ

- Pixel Module Test Stand
 - FPGA/PCI readout card and software are working.
- Calibration and monitoring
 - Pulse injection system prototyped and working.
 - Current, voltage and temperature monitor working.
- Columbia/Nevis DAQ approach :
 - FPGA at detector receives data driven FPIX output, sends to counting house over fiber.
 - Receiver on PCI card in PHENIX DAQ farm uses DMA to put selected data into event memory.
 - Prototype system tested and working with standalone PC.
- LANL approach: ROC, FEM and DCM
 - Read Out Controller has FPGA at detector, sends data to:
 - Front End Module selects triggered event data, sends data to standard PHENIX DCM.
 - ROC and FEM prototypes working with interface to PC, no fiber interface yet.

LANL FPIX2.1 / sensor Calibration Results

- Realistic triggered readout.
- Results of threshold scan reproduce FNAL test results. →
 - The proposed readout design is working as expected
- 7 min required for 100 pulses at 64 amplitude settings.
- One pixel tested at a time, Measured noise is 140 electrons!

Hardware Completion Schedule

• FY06 : HDI designed	done				
First pixel modules flip chip assembled	done				
Si sensors delivered	done				
FPIX2.1 readout chips delivered	done				
Test bench DAQ systems	done				
• FY07 : Decision on DAQ design	03/07				
HDI Production	05/07				
Flip chip Si detectors and FPIX readout chips	08/07				
Beam test of a few modules	???				
• FY08 : Pixel plane printed circuit boards	10/07				
Pixel module assembly	03/08				
DAQ Electronics	03/08				
Pixel plane assembly	06/08				
• FY09: Full system testing outside of PHENIX	12/08				
Ready for installation in PHENIX, needs VTX for primary vertex determination. Useful with p-p, d-Au or Au-Au beams					

Benefits to FVTX Program

- Expect to use same readout design and test stands for iFVTX and FVTX.
- Share same mechanical support structure with FVTX, with one additional insert for iFVTX. Can be assembled independently of VTX, FVTX.
- Simulation and analysis tools developed for iFVTX work for FVTX as well. Mainly a change in the length of the pixels.
- Experience gained with hit rates, noise levels, etc will provide useful input for FVTX program.
- Several man-years of R+D work are being paid by our LDRD grant, much of which is of direct value to the FVTX.

Next Steps with PHENIX?

- Letter of intent.
- Timing of installation with respect to HBD, VTX, FVTX.
- Required PHENIX DAQ resources and systems integration.
- What else?

Backup slides

BTeV Pixel Detector Module

- Pixel Sensor bump-bonded to Readout chip
- Fine segmentation
 - 50 μ m x 400 μ m
 - Large number of channels
 - Electronics in the active tracking volume
 - High power density
 - → cooling system required
- Basic building block Multichip Module (MCM)
 - 8 readout chips / module
 - HDI and flex cables
- Assemble modules on both sides of substrate to form pixel plane; providing a high resolution radius measurement plus a good phi measurement.

Multichip module

Module Assembly

Nevis FPIX Interface

- Current design reads single FPIX with 1- or 4-lines
- Altera Cyclone FPGA
- No provision for time-ordering pixel data
- Includes 15-bit counter to implement timed commands and timestamps
- FIFO buffers non-immediate commands (128 deep)

Nevis FPIX Receiver

- Implemented as 32-bit 33 MHz PCI card
- Provides 3 channels: Control out, control in, data in
- Communicates with user via registers
- Dataflow governed by ABC register architecture (one set of ABC per channel)
 - A: physical RAM address (in PC) of next DMA transfer
 - B: physical RAM address (in PC) of next user access
 - C: contains bookkeeping to allow pci card to know when/where to wrap A values
- Uses ACEX family FPGA
- 256 kB SRAM on-board

LANL Pixel Detector Readout Design

Readout electronics split into two parts

- Near the detector
 - Compresses and serializes the data from a group of chips
 - Radiation tolerance → use FLASH based FPGAs from Actel
 - Fiber link to the control room
- In the Control Room (FEM)
 - Buffer data for 64 beam clocks
 - Write data upon LVL1 trigger request
 - SRAM based FPGAs from Xilinx (Altera)

FNAL Readout Chip Comparison

Chip All 50 µm spacing	Noise Threshold σ	Ministrip	Readout type speed	Trigger possible	Power per chan	Geometry r-phi
SVX4 128 ch	S/N -12/1	yes	Pipeline 53 MHz	no	2 mW	yes
FSSR 128 ch	250 e 440 e	yes	Data push 840 Mb	yes	3 mW	yes
FPIX 2816 ch	220 e 125 e	no	Data Push 840 Mb	yes	90 μW	no

FSSR and FPIX chip are good candidates for LDRD project

Signal = 24000 e for 300 μ m Si Sensor.